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Abstract Formulation of locally conservative least-squares finite element methods (LS-
FEM) for the Stokes equations with the no-slip boundary condition has been a long stand-
ing problem. Existing LSFEMs that yield exactly divergence free velocities require non-
standard boundary conditions [3], while methods that admit the no-slip condition satisfy
the incompressibility equation only approximately [4, Chapter 7]. Here we address this
problem by proving a new non-standard stability bound for the velocity-vorticity-pressure
Stokes system augmented with a no-slip boundary condition. This bound gives rise to
a norm-equivalent least-squares functional in which the velocity can be approximated by
div-conforming finite element spaces, thereby enabling a locally-conservative approxima-
tions of this variable. We also provide a practical realization of the new LSFEM using
high-order spectral mimetic finite element spaces [15] and report several numerical tests,
which confirm its mimetic properties.

1. Introduction

In this paper we consider least-squares finite element methods (LSFEMs) for the velocity-
vorticity-pressure (VVP) formulation of the Stokes problem

(1)


∇ × ω + ∇p = f in Ω

∇ × u − ω = 0 in Ω

∇ · u = 0 in Ω

,

where u denotes the velocity, ω the vorticity, p the pressure and f the force per unit
mass. Our main focus is on the formulation of conforming LSFEMs that are (i) locally
conservative, and (ii) provably stable when the system (1) is augmented with the no-slip
(velocity) boundary condition

(2) u = 0 on ∂Ω.

Note that (2) is equivalent to a pair of boundary conditions

(3) u · n = 0 and u × n = 0 on ∂Ω ,

for the normal and tangential components of the velocity field, respectively.
Formulation of conforming LSFEMs that satisfy both (i) and (ii) had been a long-

standing challenge. Existing conforming methods generally fall into one of the following
two categories. The LSFEMs in the first category, see e.g., [2], [8], are stable and ac-
curate for (1) with the boundary condition (2) but satisfy ∇ · u = 0 only approximately.
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Conversely, the LSFEMs in the second category; see, e.g., [3], [4, Chapter 7] yield exactly
divergence free velocity fields but require the non-standard normal velocity, tangential vor-
ticity boundary condition

(4) u · n = 0 and ω × n = 0 on ∂Ω ,

i.e., they specify only the first of the two velocity conditions in (3).
Thus far, achieving both stability and mass conservation with the velocity boundary

condition has been only possible by switching to a non-conforming formulations such as
the discontinuous LSFEMs in [6] and [7]. In this paper we address this problem by de-
veloping a new, non-standard a priory stability bound for the VVP Stokes system with (2).
We refer to this bound as “non-standard” because (i) it uses an operator norm to measure
the residual of the momentum equation in (1), instead of a conventional Sobolev space
norm, and (ii) it employes a weak curl and grad operator in the second equation of (1).
This stability bound gives rise to a norm-equivalent functional, which can be discretized
by using div-conforming elements for the velocity fild. In so doing we are able to obtain a
LSFEM that is both locally conservative and stable for (1)–(2).

We have organized the rest of the paper as follows. Section 2 introduces notation and
some necessary background results. In Section 3 a non-standard stability bound will be
given. In Section 4 the associated variational formulation will be presented. Section 5 in-
troduces conforming finite dimensional subspaces which respect the properties of the exact
sequences. In this section all operations on polynomials will be represented by operations
on their expansion coefficients. Results of the mimetic least-squares spectral element will
be presented. Concluding remarks and future work are discussed in Section 7.

2. Preliminaries

In what follows Ω ⊂ Rd, d = 2, 3 is a bounded open region with Lipschitz boundary ∂Ω.
We recall the space L2(Ω) of all square integrable functions with norm and inner product
denoted by ‖ · ‖0 and (·, ·)0, respectively, and its subspace L2

0(Ω) of all square integrable
functions with a vanishing mean. The spaces H(grad,Ω), H(curl,Ω) and H(div,Ω) contain
square integrable functions whose gradient, curl and divergence are also square integrable.
When equipped with the graph norms

‖q‖grad := ‖q‖20 + ‖∇q‖20, ‖ξ‖
2
curl := ‖ξ‖20 + ‖∇ × ξ‖20 , and ‖v‖2div := ‖v‖20 + ‖∇ · v‖20 ,

the spaces H(grad,Ω), H(curl,Ω) and H(div,Ω) are Hilbert spaces.
We will also need the factor space H(grad,Ω)/R, which contains equivalence classes

of functions in H(grad,Ω) differing by a constant, and the subspaces

H0(curl,Ω) = {v ∈ H(curl,Ω) |v × n = 0 on ∂Ω} ,

H0(div,Ω) = {v ∈ H(div,Ω) |v · n = 0 on ∂Ω} ,

of H(curl,Ω) and H(div,Ω), respectively containing functions whose tangential and nor-
mal traces vanish on the boundary. The Poincare inequalities

(5) ‖q‖0 ≤ C‖∇q‖0, ‖ξ‖0 ≤ C {‖∇ × ξ‖0 + ‖∇ · ξ‖0} , ‖v‖0 ≤ C {‖∇ · v‖0 + ‖∇ × v‖0} ,

which hold for all q ∈ H(grad,Ω)/R, ξ ∈ H0(curl,Ω) and v ∈ H0(div,Ω), respectively,
imply that the associated semi-norms are norms on these spaces.

The spaces H(grad,Ω), H(curl,Ω) and H(div,Ω), and the associated spaces H(grad,Ω)/R,
H0(curl,Ω), and H0(div,Ω) provide the domains for the gradient, divergence and curl oper-
ators. We denote the ranges of these operators byR(?), resp., R0(?) where? ∈ {∇,∇×,∇·}.
For instance, R(∇×) is the range of curl acting on H(curl,Ω) and R0(∇·) is the range of
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divergence acting on H0(div,Ω). Likewise, N(?), resp. N0(?) are the nullspaces of these
operators in the appropriate function spaces.

The vector identities ∇ × (∇) = 0 and ∇ · (∇×) ≡ 0 imply that R0(∇) ⊆ N0(∇×),
R0(∇×) ⊆ N0(∇·), and R(∇) ⊆ N(∇×) and R(∇×) ⊆ N(∇·). In this paper we assume that
Ω is such that

(6) R0(∇) = N0(∇×), R(∇) = N(∇×) and R0(∇×) = N0(∇·), R(∇×) = N(∇·).

A sufficient condition1 for (6) to hold is for Ω to be a contractible, or star-shaped. This
result is known as general Poincare lemma [19, p.69]

2.1. Adjoint operators and decompositions. The proof of the non-standard stability
bound in Section 3 uses on orthogonal decompositions of H0(div,Ω) and H(div,Ω). Since
R0(∇×) is a closed subspace of H0(div,Ω) and R(∇×) is a closed subspace of H(div,Ω),
assumption (6) implies that

H0(div,Ω) = R0(∇×) ⊕ R0(∇×)⊥ = N0(∇·) ⊕ N0(∇·)⊥

H(div,Ω) = R(∇×) ⊕ R(∇×)⊥ = N(∇·) ⊕ N(∇·)⊥ .
For instance, the first decomposition means that every u ∈ H0(div,Ω) can be written as

(7) u = uN + uN⊥ .

where uN ∈ N0(∇·) and uN⊥ ∈ N(∇·)⊥. The nullspace component uN = ∇ × ξ solves the
variational equation: seek ξ ∈ H0(curl,Ω) and µ ∈ H0(grad,Ω) such that

(8)
(∇ × ξ,∇ × ζ)0 + (ζ,∇µ)0 = (u,∇ × ζ)0 ∀ζ ∈ H0(curl,Ω),

(ξ,∇λ)0 = 0 ∀λ ∈ H0(grad,Ω)

The orthogonal complement component uN⊥ solves a similar mixed problem: seek uN⊥ ∈

H0(div,Ω) and φ ∈ L2
0(Ω) such that

(9)
(uN⊥ ,v)0 + (φ,∇ · v)0 = 0 ∀v ∈ H0(div,Ω),

(∇ · uN⊥ , ϕ)0 = (∇ · u, ϕ) ∀ϕ ∈ L2
0(Ω)

For a given φ ∈ L2
0(Ω) the first equation in (9) induces a mapping φ 7→ uN⊥ which we call

a “weak” gradient ∇∗ of φ. Succinctly, ∇∗ : L2
0(Ω) 7→ H0(div,Ω) according to

(10) (∇∗φ,v)0 := (φ,−∇ · v)0 , ∀v ∈ H0(div,Ω) .

One can show that under assumption (6) there holds N0(∇·)⊥ = R0(∇∗) and so,

(11) H0(div,Ω) = R0(∇×) ⊕ R0(∇∗) .

In other words, the decomposition assumes the form

(12) u = ∇ × ξ + ∇∗φ

where ξ ∈ H0(curl,Ω) and φ ∈ L2
0(Ω). In particular, φ ∈ L2

0(Ω) satisfies ∇∗φ · n = 0.
We will also need a “weak” version of the curl operator ∇∗×u : H(div,Ω) 7→ H(curl,Ω)

defined by

(13) (∇∗ × u, ξ)0 := (u,∇ × ξ)0 , ∀ξ ∈ H(curl,Ω) .

The operator ∇∗× enforces weakly the boundary condition u × n = 0 on its argument.
And we need a “weak” version of the gradient operator ∇∗p : L2(Ω) 7→ H(div,Ω)

defined by

(14) (∇∗p,u)0 := (p,−∇ · u)0 , ∀u ∈ H(div,Ω) .

1The first identity holds if Ω has no loops, whereas the second identity holds if Ω has no holes.
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2.2. Weak norms and seminorms. The a priory stability bound for (1) that provides
the foundation for our mimetic LSFEM requires nonstandard norms and seminorms for
functions in H(div,Ω), H(curl,Ω) and L2(Ω). First, for any u ∈ H(div,Ω) we define

(15) ‖u‖D = sup
v∈H(div,Ω)

(u,v)0

‖v‖div
.

Second, for any ξ ∈ H(curl,Ω) we define

(16) ‖∇ × ω‖N0 := sup
v∈N0(∇·)

(∇ × ω,v)0

‖v‖div
.

Lastly, for any p ∈ L2(Ω) we define

(17) ‖∇∗p‖N⊥0 := sup
v∈N0(∇·)⊥

(p,∇ · v)0

‖v‖div
.

Norm (15) is simply the norm on the dual space H(div,Ω)′. Insofar as (16) is concerned
taking sup over the nullspace N0(∇·) implies that

‖∇ × ω‖N0 ≤ ‖∇ × ω‖0

and so we call (16) weak curl semi norm. Finally, it is easy to see that (17) satisfies

‖∇∗p‖N⊥0 ≤ ‖∇
∗p‖0

and we will refer to it as the weak norm on L2(Ω).

3. Non-standard stability bound

In this section we establishes a priori stability bound for the VVP Stokes system (1)
with the no-slip boundary condition (3). The proof draws upon the techniques in [3] with
one important distinction. Stability proof in that paper relies on the orthogonality between
∇ × ω and ∇∗p when ω has a vanishing tangential component, i.e., the fact that

(18) (∇ × ω,∇∗p) = 0 ∀ω ∈ H0(curl,Ω) and p ∈ L2(Ω) .

This implies a trivial lower bound (in fact an identity) for the L2-norm of the residual of
the momentum equation

(19) ‖∇ × ω + ∇∗p‖0 ≥ ‖∇ × ω‖0 + ‖∇∗p‖0 ,

which represents a key juncture in the proof.
However, for the case of the no-slip boundary condition of interest to us,ω ∈ H(curl,Ω)

and ∇ × ω is not orthogonal to ∇∗p. As a result, (18), resp. (19) do not hold. Nonetheless,
the following theorem demonstrates that a lower bound similar to (19) can be established
in terms of appropriate weak norms and semi norms.

Theorem 1. For all ω ∈ H(curl,Ω) and all p ∈ L2(Ω) there holds

(20) ‖∇ × ω + ∇∗p‖D ≥
1
2

(
‖∇ × ω‖N0 + ‖∇∗p‖N⊥

)
.

Proof. In order to bound the dual norm (15) from below by the weak curl-seminorm we
restrict the supremum to functions in N0(∇·) and use the fact that ∇∗p ∈ N⊥0 (∇·), see (14).
As a result,

‖∇ × ω + ∇∗p‖D = sup
v∈H(div,Ω)

(∇ × ω + ∇∗p,v)0

‖v‖div
≥ sup
v∈N0(∇·)

(∇ × ω + ∇∗p,v)0

‖v‖div

∇∗p∈N⊥0 (∇·)
= sup

v∈N0(∇·)

(∇ × ω,v)0

‖v‖div
= ‖∇ × ω‖N0 .(21)
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Similarly, to bound the dual norm in terms of the weak L2 norm we restrict the supremum
to the orthogonal complement N0(∇·)⊥. From (12) we know that all elements of N0(∇·)⊥

are given by ∇∗φ for φ ∈ L2
0(Ω). From (13) we have that

0 = (∇∗ × ∇∗φ,ω)0 = (∇∗φ,∇ × ω)0 ,

where again ∇∗× weakly enforces ∇∗φ × n = 0:

‖∇ × ω + ∇∗p‖D = sup
v∈H(div,Ω)

(∇ × ω + ∇∗p,v)0

‖v‖div
≥ sup
v∈N0(∇·)⊥

(∇ × ω + ∇∗p,v)0

‖vp‖div

∇×ω⊥N0(∇·)⊥
= sup

v∈N0(∇·)⊥

(∇∗p,v)0

‖v‖div
= ‖∇∗p‖N⊥0 .(22)

Combination of these two bounds proves the theorem:

‖∇ × ω + ∇∗p‖D =
1
2
‖∇ × ω + ∇∗p‖D +

1
2
‖∇ × ω + ∇∗p‖D

(21,22)
≥

1
2
‖∇ × ω‖N0 +

1
2
‖∇∗p‖N⊥ .(23)

�

Remark 1. Unlike the case of the nonstandard normal velocity-tangential vorticity bound-
ary condition considered in [3], in which (19) holds with an identity, Theorem 1 can only
bound a dual norm of the momentum equation from below by weaker semi norms of the
vorticity and the pressure. As mentioned at the beginning of this section, the reason for this
is the lack of orthogonality between ∇ × ω and ∇∗p.

To state the main result of this section it is convenient to introduce the “weak” curl norm

‖ω‖2N0
= ‖ω‖20 + ‖∇ × ω‖2N0

.

Theorem 2. There exists a constant C > 0 such that

‖∇ × ω + ∇∗p‖2D + ‖ω − ∇∗ × u‖20 + ‖∇ · u‖20 ≥ C
{
‖ω‖2N0

+ ‖u‖div + ‖∇∗p‖2N⊥0

}
.

for every ω ∈ H(curl,Ω), u ∈ H0(div,Ω) and p ∈ L2(Ω).

Proof. The proof follows the ideas in [3]. We have

(24) ‖∇∗ × u − ω‖20 = ‖∇∗ × u‖20 + ‖ω‖20 − 2(∇∗ × u, ω)

where ∇∗× is the weak curl2 defined in (13). To bound the last term we split it in two equal
parts. On the one hand, the Cauchy-Schwartz inequality gives the bound

(∇∗ × u, ω) ≤ ‖∇∗ × u‖0‖ω‖0 .

On the other hand, using (12) and (13)

(∇∗ × u,ω) = (∇∗ × (uN + uN⊥ ),ω) = (∇∗ × uN ,ω) = (uN ,∇ × ω) ,

and since uN ∈ N0(∇·) definition (16) of the weak curl semi norm implies

(uN ,∇ × ω) ≤ ‖uN‖0‖∇ × ω‖N0 ≤ ‖u‖0‖∇ × ω‖N0 .

Using these inequalities in (24) gives the bound

‖∇∗ × u − ω‖20 ≥ ‖∇
∗ × u‖20 + ‖ω‖20 − ‖∇

∗ × u‖0‖ω‖0 − ‖u‖0‖∇ × ω‖N0 .

2We recall that this operator enforces u × n = 0 in a weak, variational sense. As a result, the first part of
the no-slip condition (3) is enforced strongly through u ∈ H0(div,Ω), while the second part is enforced weakly
through the definition of ∇∗×.
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Using the ε-inequality for the last two terms gives

‖∇∗ × u − ω‖20

≥

(
1 −

δ

2

)
‖∇∗ × u‖20 +

(
1 −

1
2δ

)
‖ω‖20 −

ε

2
‖u‖20 −

1
2ε
‖∇ × ω‖2N0

.(25)

Using Poincaré-Friedrichs inequality [4, Theorems A.10-A.11]

(26) ‖∇∗ × u‖20 + ‖∇ · u‖20 ≥
1

C2
P

‖u‖20 ,

gives

‖∇∗ × u − ω‖20 + ‖∇ · u‖20 ≥
1
2

(1 − δ) ‖∇∗ × u‖20 +
1
2
‖∇ · u‖20

+

(
1 −

1
2δ

)
‖ω‖20 +

1
2

 1
C2

P

− ε

 ‖u‖20 − 1
2ε
‖∇ × ω‖2N0

.(27)

Adding β times the momentum equation yields and using Theorem 1

β‖∇ × ω+∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20

≥
1
2

(1 − δ) ‖∇∗ × u‖20 +
1
2
‖∇ · u‖20 +

(
1 −

1
2δ

)
‖ω‖20+

1
2

 1
C2

P

− ε

 ‖u‖20 +
1
2

(β − ε) ‖∇ × ω‖2N0
+
β

2
‖∇∗p‖2N⊥0 .(28)

For the specific choice ε = 1/C2
P, δ = 2/3 and β = 1 + 1/C2

P

(1 +
1

C2
P

)‖∇ × ω + ∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20

≥
1
6
‖∇∗ × u‖20 +

1
2
‖∇ · u‖20 +

1
4
‖ω‖20 +

1
2
‖∇ × ω‖2N0

+
1

2C2
P

(C2
P + 1)‖∇∗p‖2N⊥0(29)

≥ min
1

6
,

1
2C2

P

(C2
P + 1)

 (
‖ω‖2curl + ‖u‖2H0(div,Ω) + ‖∇∗p‖2N⊥0

)
.

The theorem follows from

‖ω − ∇∗ × u‖20 + ‖∇ × ω + ∇∗p‖2D + ‖∇ · u‖20

≥
C2

P

1 + C2
P

(1 +
1

C2
P

)‖∇ × ω + ∇∗p‖2D + ‖∇∗ × u − ω‖20 + ‖∇ · u‖20

 .(30)

�

4. Variational formulation

Based on the coercivity result in Theorem 2 we define the following least-squares func-
tion for (ξ,v, q) ∈ X = H(curl,Ω) × H0(div,Ω) × L2(Ω) and f ∈ H(div,Ω)

(31) J(ξ,v, q;f ) :=
1
2

{
‖∇∗ × v − ξ‖20 + ‖∇ × ξ + ∇∗q − f‖2D + ‖∇ · v‖20

}
.

The unique solution (ω,u, p) of the Stokes problem is then given by

(32) (ω,u, p) = arg min
(ξ,v,q)∈X

J(ξ,v, q;f ) .
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From the definition of the operator norm (15) it follows that for u ∈ H(div,Ω), ‖u‖D = 0 iff
(u,v)0 = 0 for all v ∈ H(div,Ω). Every v ∈ H(div,Ω) has a decomposition v = ∇×ξ+∇∗q
with ξ ∈ H(curl,Ω) and q ∈ L2(Ω), although this decomposition is not orthogonal

‖∇ × ω + ∇∗p − f‖D = 0 ⇐⇒ (∇ × ω + ∇∗p − f ,∇ × ξ + ∇∗q)0 = 0 ,

for all ξ ∈ H(curl,Ω) and q ∈ L2(Ω). Taking variations of ‖ω − ∇∗ × u‖20 gives

(ω − ∇∗ × u, ξ − ∇∗ × v)0 = 0 ,

for all ξ ∈ H(curl,Ω) and v ∈ H0(div,Ω). Finally, conservation of mass is satisfied if
‖∇ · u‖20 = 0 which implies that

(∇ · u,∇ · v)0 = 0 ,

for all v ∈ H0(div,Ω). If we collect all these conditions for a minimizer we obtain

(33)

(∇ × ω + ∇∗p,∇ × ξ)0 + (ω − ∇∗ × u, ξ)0 = (f ,∇ × ξ)0 ∀ξ ∈ H(curl,Ω)

(∇∗ × u − ω,∇∗ × v)0 + (∇ · u,∇ · v)0 = 0 ∀v ∈ H0(div,Ω)

(∇ × ω + ∇∗p,∇∗q)0 = (f ,∇∗q)0 ∀q ∈ L2(Ω)

Using integration by parts, using (13) and (14), we have: Find (ω,u, p) ∈ X such that
(34)

(∇ × ω,∇ × ξ)0 + (ω, ξ)0 − (u,∇ × ξ)0 = (f ,∇ × ξ)0 ∀ξ ∈ H(curl,Ω)

− (∇ × ω,v)0 + (∇∗ × u,∇∗ × v)0 + (∇ · u,∇ · v)0 = 0 ∀v ∈ H0(div,Ω)

(∇∗p,∇∗q)0 = (−∇ · f , q)0 ∀q ∈ L2(Ω)

The well-posedness result, Theorem 2, is inherited on conforming subspaces Ch ⊂

H(curl,Ω), Dh
0 ⊂ H0(div,Ω) and S h ⊂ L2(Ω). The variational equation then becomes:

Find (ωh,uh, ph) ∈ Xh = Ch × Dh
0 × S h such that

(35) (
∇ × ωh,∇ × ξh

)
0

+
(
ωh, ξh

)
0
−

(
uh,∇ × ξh

)
0

=
(
f ,∇ × ξh

)
0

∀ξh ∈ Ch

−
(
∇ × ωh,vh

)
0

+
(
∇∗ × uh,∇∗ × vh

)
0

+
(
∇ · uh,∇ · vh

)
0

= 0 ∀vh ∈ Dh
0(

∇∗ph,∇∗qh
)

0
=

(
−∇ · f , qh

)
0

∀qh ∈ S h

The next section will be devoted to the construction of such finite dimensional conforming
subspaces.

5. Mimetic spectral element method

Mimetic methods aim to decompose partial differential operators in a purely topological
part and a metric dependent part. The advantage of the purely topological description is that
it is independent of the size or shape of the mesh or the order of the approximation. We call
such relations exact. The orthogonal decomposition of Dh

0 into divergence-free vector fields
and irrotational vector fields is fully represented by the topological part. Approximation
takes place in the metric dependent part. In this section we will present the spectral element
basis functions which span the finite dimensional spaces Ch, Dh and S h.

Similar ideas can be found in Tonti, [20, 21], Bossavit, [10, 11], Desbrun et al., [13],
Bochev and Hyman, [5], Lipnikov et al, [17], Seslija et al., [18], Bonelle and Ern, [9],
Lemoine et al., [16], Kreeft et al., [15] and references therein.
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5.1. One dimensional basis spectral basis functions. Consider the interval [−1, 1] ⊂ R
and the Legendre polynomials, LN(ξ) of degree N, ξ ∈ [−1, 1]. The (N + 1) roots, ξi, of the
polynomial (1− ξ2)L′N(ξ) satisfy −1 ≤ ξi ≤ 1. Here L′N(ξ) is the derivative of the Legendre
polynomial. The zeros are called the Gauss-Lobatto-Legendre (GLL) points. Let hi(ξ) be
the Lagrange polynomial through the GLL points such that

(36) hi(ξ j) =


1 if i = j

0 if i , j
i, j = 0, . . .N .

The explicit form of the Lagrange polynomials in terms of the Legendre polynomials is
given by

(37) hi(ξ) =
(1 − ξ2)L′N(ξ)

N(N + 1)LN(ξi)(ξi − ξ)
.

Let f (ξ) be defined for ξ ∈ [−1, 1] by

(38) f (ξ) =

N∑
i=0

aihi(ξ) .

Using property (36) we see that f (ξ j) = a j, so the expansion coefficients in (38) coincide
with the value of f in the GLL nodes. We will refer to this expansion as a nodal expansion.
The basis functions hi(ξ) are polynomials of degree N.

From the nodal basis functions we define the functions ei(ξ) by

(39) ei(ξ) = −

i−1∑
k=0

dhk(ξ)
dξ

dξ = −

i−1∑
k=0

dhk(ξ) .

The functions ei(ξ) are polynomials of degree (N − 1). These polynomials satisfy, [14, 15]

(40)
∫ ξ j

ξ j−1

ei(ξ) =


1 if i = j

0 if i , j
i, j = 1, . . .N .

Let a function f (ξ) be expanded in these functions

(41) f (ξ) =

N∑
i=1

biei(ξ) ,

then using (40) ∫ ξ j

ξ j−1

f (ξ) = b j .

So the expansion coefficients bi coincide with the integral of f over the edge [ξi−1, ξi]. We
will call these basis functions edge functions and refer to the expansion (41) as an edge
expansion, see for instance [1, 15] for examples of nodal and edge expansions.

Let f (ξ) be expanded in terms Lagrange polynomials as in (38), then the derivative of f
is given by, [14, 15]

(42) f ′(ξ) =

N∑
i=0

aih′i(ξ) =

N∑
i=1

(ai − ai−1)ei(ξ) .

Remark 2. Note that the set of polynomials {h′i}, i = 0, . . . ,N is linear dependent and
therefore does not form a basis, while the set {ei}, i = 1, . . . ,N is linear independent and
therefore forms a basis for the derivatives of the nodal expansion (38).
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For all integrals we use Gauss-Lobatto integration

(43)
∫ 1

−1
f (ξ) dξ ≈

N∑
i=0

f (ξi)wi ,

where the Gauss-Lobatto weight are given by

(44) wi =


2

N(N+1) if i = 0 and i = N

2
N(N+1)L2

N (ξi)
if i = 1, . . . ,N − 1

Gauss-Lobatto integration is exact for polynomials of degree 2N − 1, see [12].

5.2. Two dimensional expansions. The decomposition of any vector field in H0(div,Ω)
into a divergence-free part and curl-free part, (2.1), is pivotal to the analysis in Section 2.
Consider [−1, 1]2 ⊂ R2. We will use tensor products of nodal and edge expansions to con-
struct conforming finite dimensional subspaces Ch

0, Dh
0 and S h

0, and Ch, Dh of H0(curl,Ω),
H0(div,Ω), L2

0(Ω) and H(curl,Ω) and H(div,Ω), respectively. Let (ξi, η j) the GLL points
in ξ- and η-direction. We will first describe the finite dimensional spaces and the primal
vector operations, ∇× and ∇·, between these space.

5.2.1. Spaces and primal vector operators. Let the space Ch consist of the span of {hi(ξ)h j(η)},
i, j = 0, . . . ,N. So any function ωh(ξ, η) ∈ Ch can be written as

(45) ωh(ξ, η) =

N∑
i=0

N∑
j=0

ωi, jhi(ξ)h j(η) = [h0(ξ)h0(η) . . . hN(ξ)hN(η)]



ω0,0

...

ωN,N


.

From (36) it follows that ωi, j = ω(ξi, η j). We obtain Ch
0 from Ch by setting the degrees of

freedom on the boundary to zero, so for ψh ∈ Ch
0 we have the expansion

(46) ψh(ξ, η) =

N−1∑
i=1

N−1∑
j=1

ψi, jhi(ξ)h j(η) = [h1(ξ)h1(η) . . . hN−1(ξ)hN−1(η)]



ψ1,1

...

ψN−1,N−1


.

If we apply the 2D curl to ωh we obtain, using (42)

∇ × ωh =

( ∑N
i=0

∑N
j=1(ωi, j − ωi, j−1)hi(ξ)e j(η)∑N

i=1
∑N

j=0(ωi−1, j − ωi, j)ei(ξ)h j(η)

)

=

[
h0(ξ)e1(η) . . . hN(ξ)eN(η) 0 . . . 0

0 . . . 0 e1(ξ)h0(η) . . . eN(ξ)hN(η)

]
E1,0



ω0,0

...

ωN,N


.(47)

Here E1,0 is called an incidence matrix which contains the values −1, 0 and 1. This inci-
dence matrix is very sparse.

Let the space Dh be the span of {hi(ξ)e j(η)} × {ek(ξ)hl(η)}, for i, l = 0, . . . ,N and j, k =

1, . . . ,N, then (47) shows that ∇× : Ch → Dh.
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Let f h ∈ Dh, then it can be expanded as

f h =

 ∑N
i=0

∑N
j=1 f ξi, jhi(ξ)e j(η)∑N

i=1
∑N

j=0 f ηi, jei(ξ)h j(η)



=

[
h0(ξ)e1(η) . . . hN(ξ)eN(η) 0 . . . 0

0 . . . 0 e1(ξ)h0(η) . . . eN(ξ)hN(η)

]


f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


.(48)

Since both ∇ × ωh ∈ Dh and f h ∈ Dh, the equality ∇ × ωh = f h makes sense in Dh. If we
equate (47) and (48), we obtain

(49) E1,0



ω0,0

...

ωN,N


=



f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


,

independently of the basis functions! So ∇× can be discretized by the sparse incidence
matrix E1,0 which only contains the entries −1, 0 and 1. This incidence matrix is indepen-
dent of the mesh width, the shape of the mesh – you can stretch, twist, shear the grid but
the incidence matrix remains the same – and it is independent of the order of the scheme.
E1,0 represents the purely topological part of the derivative. All metric properties, size and
shape of the grid and the order of the scheme, are contained in the basis functions.

The space Dh
0 is obtained from Dh by setting all fluxes over the outer boundary to zero.

An element uh ∈ Dh
0 is therefore represented as

uh =

 ∑N−1
i=1

∑N
j=1 uξi, jhi(ξ)e j(η)∑N

i=1
∑N−1

j=1 uηi, jei(ξ)h j(η)



=

[
h1(ξ)e1(η) . . . hN−1(ξ)eN(η) 0 . . . 0

0 . . . 0 e1(ξ)h1(η) . . . eN(ξ)hN−1(η)

]


uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


.(50)
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Note that if ψh ∈ Ch
0 as in (46) then ∇×ψh ∈ Dh

0 therefore ∇×ψh = uh is well-defined
in Dh

0. The relation between the expansion coefficients of ψh and uh is given by

(51) Ē1,0



ψ1,1

...

ψN−1,N−1


=



uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


.

Here Ē1,0 is obtained from the E1,0 in (49) by eliminating the the rows which correspond
to zero velocity fluxes over the outer boundary and the columns corresponding to the zero
stream function along the outer boundary.

Let f h ∈ Dh as in (48) then the divergence of f h is given by

∇ · f h =

N∑
i=1

N∑
j=1

(
f ξi, j − f ξi−1, j + f ηi, j − f ηi, j−1

)
ei(ξ)e j(η)

= [e1(ξ)e1(η) . . . eN(ξ)eN(η)]E2,1



f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


,(52)

where we used (42) again. The incidence matrix E2,1 is again a sparse matrix which only
contains the values −1, 0 and 1. Note that for all ωh ∈ Ch

0 we have that

(53) ∇ · (∇ × ωh) = [e1(ξ)e1(η) . . . eN(ξ)eN(η)]E2,1E1,0


ω0,0
...

ωN,N

 = 0 .

Since this has to hold for all ωh ∈ Ch and the basis {ei(ξ)e j(η)} is linearly independent, we
need to have E2,1E1,0 ≡ 0.

Let S h be space spanned by the basis functions {ei(ξ)e j(η)}, then we see that ∇· : Dh 7→

S h. So for any qh ∈ S h expanded as

(54) qh =

N∑
i=1

N∑
j=1

qi, jei(ξ)e j(η) ,
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the equation ∇ · f h = qh makes sense in S h and since both ∇ · f h and qh are expanded in
the same basis, the expansion coefficients need to be equal

(55) E2,1



f ξ0,1
...

f ξN,N
f η1,0
...

f ηN,N


=


q1,1
...

qN,N

 .

For uh ∈ Dh
0 the expansion of ∇ · uh has a similar expansion as (52)

∇ · uh =

N∑
i=1

N∑
j=1

(
uξi, j − uξi−1, j + uηi, j − uηi, j−1

)
ei(ξ)e j(η)

= [e1(ξ)e1(η) . . . eN(ξ)eN(η)]Ē2,1



uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


,(56)

where uξ0, j = uξN, j = uηi,0 = uηi,N = 0 in the first equality. Note that the incidence matrix Ē2,1

is obtained from E2,1 in (52) by removing the columns which correspond to the zero fluxes
along the outer boundary.

Because ∇· : Dh
0 → S h

0, we set S h
0 = span{ei(ξ)e j(η)} for i, j = 1, . . . ,N. This means

that every mh ∈ S h
0 can be expanded as

(57) mh(ξ, η) =

N∑
i=1

N∑
j=1

mi, jei(ξ)e j(η) .

Using (40) we see that

mi, j =

∫ ξi

ξi−1

∫ η j

η j−1

mh(ξ, η) dξdη .

The expansion coefficients mi, j therefore denote the integral of mh over the two-dimensional
volume [ξi−1, ξi] × [η j−1, η j].

If mh ∈ S h
0 is in the range of ∇· applied to Dh

0, i.e. mh = ∇ · uh for uh ∈ Dh
0 then

(58)
∫ 1

−1

∫ 1

−1
mh dξdη =

∫ 1

−1

∫ 1

−1
∇ · uh dξdη = 0 .

So, S h
0 is obtained from S h by imposing the constraint (58). Using (57) this implies that

the degrees of freedom (expansion coefficients) mi, j need to satisfy

(59)
N∑

i=1

N∑
j=1

mi, j = 0 .

For all ψh ∈ Ch
0 we have that ∇ · (∇ × ψh) ≡ 0 which implies analogous to (53) that

Ē2,1Ē1,0 ≡ 0.
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Note also that conservation of mass, ∇·uh = 0, by (56) reduces to the following relation
for the expansion coefficients of uh

(60) Ē2,1



uξ1,1
...

uξN−1,N
uη1,1
...

uηN,N−1


= 0 .

We now have the conforming finite dimensional function spaces Ch ⊂ H(curl,Ω), Dh ⊂

H(div,Ω), S h ∈ L2(Ω), Ch
0 ⊂ H0(curl,Ω), Dh

0 ⊂ H0(div,Ω) and S h
0 ∈ L2

0(Ω), such that ∇×
and ∇· form an exact sequence between these spaces, i.e we have the finite dimensional
analogue of (6)

(61) Rh
0(∇×) = Nh

0 (∇·) and Rh(∇×) = Nh(∇·) .

This relation can also be expressed in terms of the incidence matrices as

(62) Rh(Ē1,0) = Nh(Ē2,1) and Rh(E1,0) = Nh(E2,1) .

5.3. Inner products. In order to define the adjoint operators, we need to introduce inner-
products on the various spaces.

5.3.1. Inner-product on Ch. Let ϕh,ω ∈ Ch, then the L2-inner product in Ch is given by

(63)
(
ϕh,ωh

)
0

=

∫ 1

−1

∫ 1

−1
ϕhωh dξdη =

[
ϕ0,0 . . . ϕN,N

]
M(0)



ω0,0

...

ωN,N


,

whereM(0) is an (N + 1)2 × (N + 1)2 matrix with entries

(64) M(0) =

∫ 1

−1

∫ 1

−1
hi(ξ)h j(η)hk(ξ)hl(η) dξdη , i, j, k, l = 0 . . . ,N .

If we evaluate the integrals in the mass matrix using GLL integration, (43), and use (36),
we see that M(0) is a diagonal matrix with the product of the integration weights (44) on
the diagonal.

5.3.2. Inner-product on Ch
0. Let ξh,ψ ∈ Ch

0, then the L2-inner product in Ch
0 is given by

(65)
(
ξh,ψh

)
0

=

∫ 1

−1

∫ 1

−1
ξhψh dξdη =

[
ξ1,1 . . . ϕN−1,N−1

]
M̄(0)



ψ1,1

...

ωN−1,N−1


,

where M̄(0) is an (N − 1)2 × (N − 1)2 obtained fromM(0) by deleting the rows and columns
corresponding to the prescribed zero values of ξh and ψh along the boundary. The mass
matrix M̄(0) is still diagonal.
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5.3.3. Inner-product on Dh. For uh,vh ∈ Dh the inner-product is given by

(66)
(
uh,vh

)
0

=

∫ 1

−1

∫ 1

−1
(uhvh), dξdη =

[
uξ0,1 . . . u

η
N,N

]
M(1)


vξ0,1
...

vηN,N

 .
Here the mass matrix is given by

(67) M(1) =


(
hi(ξ)e j(η)hk(ξ)el(η)

)
0

0
0

(
ep(ξ)hq(η)er(ξ)hs(η)

)
0

 ,
for i, k, q, s = 0, . . . ,N and j, l, q, r = 1, . . . ,N. The mass matrix M(1) is a 2N(N + 1) ×
2N(N + 1) block diagonal matrix, but it is not diagonal.

5.3.4. Inner-product on Dh
0. The mass matrix M̄(1) on Dh

0 is obtained fromM(1) by remov-
ing the row and columns which correspond to the zero fluxes on the boundary. M̄(1) is then
a 2N(N − 1) × 2N(N − 1) block diagonal matrix.

5.3.5. Inner-product on S h and S h
0. The mass matrixM(2) for both S h and S h

0 is given by

(68) M(2) =

∫ 1

−1

∫ 1

−1
ei(ξ)e j(η)ek(ξ)el(η) dξdη ,

for i, j, k, l = 1, . . . ,N. M(2) is not diagonal, but diagonal dominant.

5.4. Finite dimensional adjoint operators. With the primary operators ∇× and ∇· de-
fined in Section 5.2.1 and the inner-products in Section 5.3, we can now define the adjoint
operators in the same way as in Section 2.2.

Let ψh ∈ Ch
0, then ∇ ×ψh ∈ Dh

0, if we take the inner-product with any vh ∈ Dh
0 we have

in terms of the expansion coefficients of ψh and vh

(
vh,∇ ×ψh

)
0

=
[
vξ1,1 . . . v

η
N,N−1

]
M̄(1)Ē(1,0)


ψ1,1
...

ψN−1,N−1


=

[
vξ1,1 . . . v

η
N,N−1

]
M̄(1)Ē(1,0)M̄(0)−1

M̄(0)


ψ1,1
...

ψN−1,N−1


=

(
∇∗ × vh,ψh

)
.(69)

So the expansion coefficients of ∇∗ × vh are given by

M̄(0)−1
Ē(1,0)T

M̄(1)


vξ1,1
...

vηN,N−1

 .
These are the expansion coefficients in Ch

0. So if ∇× : Ch
0 → Dh

0 then ∇∗× : Dh
0 → Ch

0.
Note that in this integration by parts no boundary integral is neglected becauseψh vanishes
along the boundary.
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Let uh ∈ Dh
0 then ∇ · uh ∈ S h

0. If we take the inner-product with any φ ∈ S h
0, we obtain

in terms of the expansion coefficients of uh and φh

(
φh,∇ · uh

)
0

=
[
φ1,1 . . . φN,N

]
M̄(2)Ē2,1


uξ1,1
...

uηN,N−1


=

[
φ1,1 . . . φN,N

]
M̄(2)Ē2,1M̄(1)−1

M̄(1)


uξ1,1
...

uηN,N−1


=

(
∇∗φ,uh

)
0
.(70)

Therefore, the expansion coefficients of ∇∗φ ∈ Dh
0 are given by

M̄(1)−1
Ē2,1T
M̄(2)


φ1,1
...

φN,N

 .
These are expansion coefficients in Dh

0 so we use the basis functions in Dh
0 to expand ∇∗φh,

such that ∇∗ : S h
0 → Dh

0. Note that again no boundary integrals were neglected, because
uh · n = 0 for all uh ∈ Dh

0.
From

0 =
(
∇ · (∇ × ψh), φh

)
0

=
(
∇ × ψh,∇∗φh

)
0

=
(
ψh,∇∗ × (∇∗φh)

)
0
,

it follows that
Rh

0(∇∗) = Nh
0 (∇∗×) and Rh

0(∇×) ⊥ Rh
0(∇∗) .

This can also be seen from the expansion coefficients. The expansion coefficients ~φ of φh

are mapped on the expansion coefficients M̄(1)−1
Ē2,1T
M̄(2)~φ of ∇∗φh, which are then mapped

by to the expansion coefficients M̄(0)−1
Ē(1,0)T

M̄(1)M̄(1)−1
Ē2,1T
M̄(2)~φ of∇∗×∇∗φh which is zero

because Ē(1,0)T
Ē2,1T

=
(
Ē(1,0)Ē2,1

)
≡ 0.

We can now write the orthogonal decomposition of any uh ∈ Dh
0 in terms of the expan-

sion coefficients. Let ψh ∈ Ch
0 and φh ∈ S h

0 such that

uh = ∇ × ψh + ∇∗φh .

Then we have for the expansion coefficients

~u = Ē1,0~ψ + M̄(1)−1
Ē(2,1)T

M̄(2)~φ ,

from which we can obtain the expansion coefficients ~ψ and ~φ by solving the symmetric
systems

M̄(2)Ē2,1~u = M̄(2)Ē2,1M̄(1)−1
Ē(2,1)T

M̄(2)~φ and Ē1,0T
M̄(1)~u = Ē1,0T

M̄(1)Ē1,0~ψ .

Ch
0 Dh

0 S h
0

∇×

∇∗×

∇·

∇∗

Or in terms of the expansion coefficients in these space

E(Ch
0) E(Dh

0) E(S h
0)

Ē1,0

M̄(0)−1
Ē1,0T

M̄(1)

Ē2,1

M̄(1)−1
Ē2,1T

M̄(2)
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A similar construction can be applied for the adjoint operators between the spaces Ch,
Dh and S h. Let ωh ∈ Ch, then ∇ ×ωh ∈ Dh. If we take an arbitrary vh ∈ Dh, then the inner
product in terms of the expansion coefficients can be written as

(
vh,∇ × ωh

)
0

=
[
vξ0,1 . . . v

η
N,N

]
M(1)E(1,0)


ω0,0
...

ωN,N


=

[
vξ0,1 . . . v

η
N,N

]
M(1)E(1,0)M(0)−1

M(0)


ω0,0
...

ωN,N


=

(
∇∗ × vh,ωh

)
.(71)

So the expansion coefficients of ∇∗ × vh are given by

M(0)−1
E(1,0)T

M(1)


vξ0,1
...

vηN,N

 .
Note that in (71) we used (13), which implies that we implicitly set vh × n = 0. The
expansion coefficients of ∇∗ × vh are expanded with the basis functions in Ch, therefore
∇∗× : Dh → Ch

For uh ∈ Dh then ∇ ·uh ∈ S h. If we take the inner-product with any ph ∈ S h, we obtain
in terms of the expansion coefficients of uh and ph

(
ph,∇ · uh

)
0

=
[
p1,1 . . . pN,N

]
M(2)E2,1


uξ0,1
...

uηN,N


=

[
p1,1 . . . pN,N

]
M(2)E2,1M(1)−1

M(1)


uξ0,1
...

uηN,N


=

(
∇∗ph,uh

)
0
.(72)

Therefore, the expansion coefficients of ∇∗ph ∈ Dh are given by

M(1)−1
E2,1T
M(2)


p1,1
...

pN,N

 .
These are expansion coefficients in Dh so we use the basis functions in Dh to expand ∇∗ph,
such that ∇∗ : S h → Dh. In (72), we neglected boundary integrals using (14) which weakly
impose uh · n = 0 on functions in Dh.

With these formal adjoints (neglecting boundary integrals) we have that

Rh(∇∗) = Nh(∇∗×) ,

however Rh(∇×) ⊥ Rh(∇∗) is no longer valid, see the introduction of Section 3.

Ch Dh S h
∇×

∇∗×

∇·

∇∗
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Or in terms of the expansion coefficients in these space

E(Ch) E(Dh) E(S h)
E1,0

M(0)−1
E1,0T

M(1)

E2,1

M(1)−1
E2,1T

M(2)

5.5. Mimetic least-squares for the Stokes problem. With the conforming finite dimen-
sional spaces and the primary and adjoint vector operations between these spaces, we are
now in the position to implement (35).(

∇ × ωh,∇ × ξh
)

0
+

(
ωh, ξh

)
0
−

(
uh,∇ × ξh

)
0

=
(
f ,∇ × ξh

)
0

∀ξh ∈ Ch

−
(
∇ × ωh,vh

)
0

+
(
∇∗ × uh,∇∗ × vh

)
0

+
(
∇ · uh,∇ · vh

)
0

= 0 ∀vh ∈ Dh
0(

∇∗ph,∇∗qh
)

0
=

(
−∇ · f , qh

)
0

∀qh ∈ S h

We will use the representation of vector operations and their associated adjoint oper-
ations on the expansion coefficients and the inner-products on the various spaces. Since
some operations are multiply defined, depending to which sequence they belong it is im-
portant to establish in which sequence the operations take place; the one with boundary
conditions Ch

0 → Dh
0 → S h

0 or the sequence without boundary conditions Ch → Dh → S h.
The term

(
∇ × ωh,∇ × ξh

)
0

is an inner-product in Dh and is represented as

[ξ0,0 . . . ξN,N]E1,0T
M(1)E1,0


ω0,0
...

ωN,N

 .
The term

(
ωh, ξh

)
0

is an inner-product on Ch and will be represented as

[ξ0,0 . . . ξN,N]M(0)


ω0,0
...

ωN,N

 .
The term

(
∇∗ × uh,∇∗ × vh

)
0

is an inner-product on Ch
0 and will therefore be repre-

sented as

[vξ1,1 . . . vηN,N−1]M̄(1)Ē1,0M̄(0)−1
Ē1,0T
M̄(1)


uξ1,1
...

uηN,N−1

 .
The term

(
∇∗ph,∇∗qh

)
0

is an inner-product on Dh and will therefore be discretized as

[q1,1 . . . qN,N]M(2)E2,1M(1)−1
E2,1T
M(2)


p1,1
...

pN,N

 .
Mass conservation, as represented by the term

(
∇ · uh,∇ · vh

)
0

is an inner-product on
S h

0 and will therefore be represented by

[vξ1,1 . . . vηN,N−1]Ē2,1T
M(2)Ē2,1


uξ1,1
...

uηN,N−1

 .
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The term
(
uh,∇ × ξh

)
0

deviates from the other terms in the sense that it is in an inner-
product on Dh, since ∇ × ξh for ξh ∈ Ch maps into Dh. The space Dh is spanned by
2N(N + 1) basis functions if polynomials of degree N are used. We then take the bilinear
product with uh ∈ Dh

0 which is spanned by 2N(N − 1) basis functions. This means that the
“mass matrix” is non-square. This term will be represented as

[ξ0,0 . . . ξN,N]E1,0T
M(1)?


uξ1,1
...

uηN,N−1

 ,
where M(1)? is the 2N(N + 1) × 2N(N − 1) matrix obtained from M(1) by eliminating the
columns corresponding to prescribed zero fluxes in Dh

0.
The right hand side term

(
f ,∇ × ξh

)
0

is an inner-product on Ch which is represented as

[ξ0,0 . . . ξN,N]E1,0T
M(1)


f ξ0,1
...

f ηN,N

 ,
and the terms

(
−∇ · f , qh

)
0

is an inner product in S h represented as

[q1,1 . . . qN,N]M(2)E2,1


f ξ0,1
...

f ηN,N

 .
If we collect all these contributions, the mimetic least-squares formulation with no-slip

boundary conditions becomes
(73)
M(0) + E1,0T

M(1)E1,0 −E1,0T
M(1)? 0

−M(1)?T
E1,0 M̄(1)Ē1,0M̄(0)−1

Ē1,0T
M̄(1) + Ē2,1T

M(2)Ē2,1 0
0 0 M(2)E2,1M(1)−1

E2,1T
M(2)


 ωup

 =

 E
1,0T
M(0)f h

0
−M(2)E2,1f h

 .
The final discrete system consists only of mass matrices and incidence matrices related to
the various space and operations between these spaces. We started this section by stating
that a mimetic method aims to decompose a PDE in a purely topological part and a metric
dependent part. The mimetic least-squares formulation precisely achieves this, where the
topological part is represented by the incidence matrices and the metric dependent part
by the mass matrices. If the mesh is deformed, the mass matrices will change, but the
incidence matrices will remain the same.

6. Numerical results

In order to asses the performance of the newly developed mimetic least-squares formu-
lation, we present several test problems.

6.1. Test case 1. Consider the Stokes problem defined on the domain Ω = [−1, 1]2 with
u = 0 along the boundary. We take as exact velocity field
(74)

u(x, y) =

(
−4y(1 − y2)(1 − x2)2 sin(2π(x + y)) + 2π(1 − x2)2(1 − y2)2 cos(2π(x + y))
4x(1 − x2)(1 − y2)2 sin(2π(x + y)) − 2π(1 − x2)2(1 − y2)2 cos(2π(x + y))

)
.

This velocity field is divergence free. For the right hand side function f we take f =

∇∗ × ∇ × u. In this case the corresponding exact pressure field is constant.
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N 4 6 8 10 12 14 16 18

J(ωh,uh, ph;f ) 2.6 · 104 5.7 · 103 4.4 · 103 1.6 · 103 5.0 · 101 5.5 · 10−1 2.8 · 10−3 7.7 · 10−6

1
2 ‖ω

h − ∇∗ ×uh‖20 1.3 · 104 3.9 · 102 5.7 · 103 9.3 · 102 3.2 · 101 4.0 · 10−1 2.2 · 10−3 6.0 · 10−6

1
2 ‖∇ × ω

h + ∇∗p − f ‖2D 1.3 · 104 5.3 · 103 1.3 · 103 7.0 · 102 1.8 · 101 1.5 · 10−1 5.7 · 10−4 1.6 · 10−6

1
2 ‖∇ ·u

h‖20 7.4 · 10−14 4.1 · 10−14 6.5 · 10−13 8.1 · 10−14 4.3 · 10−14 3.0 · 10−13 1.1 · 10−13 4.7 · 10−13

‖ωh − ω‖2H(curl,Ω) 3.2 · 105 3.1 · 105 9.6 · 104 8.0 · 103 2.1 · 102 2.2 · 100 1.1 · 10−2 3.2 · 10−5

‖uh −u‖2H0(div,Ω) 2.9 · 104 3.8 · 103 1.2 · 104 2.0 · 103 6.6 · 101 8.4 · 10−1 4.7 · 10−3 1.3 · 10−5

‖ph − p‖2
L2(Ω)/R

1.0 · 104 8.1 · 101 9.7 · 100 7.8 · 10−1 1.1 · 10−2 6.5 · 10−5 1.8 · 10−7 2.6 · 10−10

Table 1. Convergence results for Test case 1 with increasing polynomial degree

In Table 1 we list the results for this test case as a function of N. In the second row
the minimum of the least-squares functional is listed. The 3 residuals which make up
the least-squares functional are presented in the following rows. The error in vorticity
‖ωh − ω‖2H(curl,Ω), the error in velocity is measured in the ‖ · ‖H0(div,Ω)-norm and the error in
the pressure is measured in the ‖ · ‖L2(Ω)/R-norm.

The first thing to note is that conservation of mass is satisfied up to machine precision.
Secondly, we see that the pressure is not independent of vorticity and velocity – as would
be the case for with normal velocity conditions and vorticity prescribed along the boundary.

6.2. Test case 2. Consider the Stokes problem defined on the domain Ω = [−1, 1]2 with
u = 0 along the boundary. The right hand side function f in this case is given by

(75) f (x, y) =

(
π cos(π(x + y))
π cos(π(x + y))

)
.

For this particular flow we expect a pressure field given by

(76) p(x, y) = sin(π(x + y)) + C ,

where C is an arbitrary constant. The velocity and vorticity for this problem are identically
zero.

N 4 6 8 10 12 14
J(ωh,uh, ph;f ) 8.4 · 102 2.2 · 100 6.9 · 10−1 1.5 · 10−2 2.5 · 10−4 2.8 · 10−6

1
2‖ω

h − ∇∗ × uh‖20 6.8 · 10−25 2.2 · 10−23 8.6 · 10−23 2.1 · 10−20 2.3 · 10−19 4.6 · 10−19

1
2 ‖∇ × ω

h + ∇∗p − f ‖2D 8.4 · 102 2.2 · 100 6.9 · 10−1 1.5 · 10−2 2.5 · 10−4 2.8 · 10−6

1
2‖∇ · u

h‖20 1.3 · 10−26 1.2 · 10−24 1.0 · 10−23 1.6 · 10−21 5.9 · 10−19 7.5 · 10−20

‖ωh − ω‖2H(curl,Ω) 4.0 · 10−24 1.5 · 10−21 2.9 · 10−20 1.7 · 10−17 5.2 · 10−16 2.4 · 10−15

‖uh − u‖2H0(div,Ω) 1.4 · 10−24 5.2 · 10−23 2.4 · 10−22 5.3 · 10−20 6.0 · 10−19 1.3 · 10−18

‖ph − p‖2L2(Ω)/R 1.6 · 103 3.6 · 101 1.7 · 10−1 2.4 · 10−4 1.3 · 10−7 3.6 · 10−11

Table 2. Convergence results for Test case 2 with increasing polynomial degree

The results for test case 2 are listed in Table 2. We see that for all polynomial degrees
we can capture exactly the zero velocity and vorticity field (up to machine accuracy) and
therefore also mass conservation is satisfied up to machine precision. What is more strik-
ing in comparison to Test case 1 is that a non-zero velocity-vorticity field influences the
pressure approximation, see Table 1. A non-constant pressure field does not influence,
however, does not influence velocity-vorticity.
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6.3. Test case 3. In Test case 1 we used a divergence-free right hand side function, while
in Test case 2 the right hand side function was irrotational. In this test case, we combine
these two cases by using the exact velocity field from Test case 1 and the exact pressure
field from Test case 2. The corresponding right hand side function is then given by

(77) f = ∇ × ∇∗ × u + ∇∗p .

The results of this test case are displayed in Table 3

N 4 6 8 10 12 14
J(ωh,uh, ph;f ) 2.7 · 104 5.7 · 103 4.4 · 103 1.6 · 103 5.0 · 101 5.5 · 10−1

1
2‖ω

h − ∇∗ × uh‖20 1.3 · 104 3.9 · 102 5.7 · 103 9.3 · 102 3.2 · 101 4.0 · 10−1

1
2 ‖∇ × ω

h + ∇∗p − f ‖2D 1.4 · 104 5.3 · 103 1.2 · 103 7.0 · 102 1.8 · 101 1.5 · 10−1

1
2‖∇ · u

h‖20 3.1 · 10−13 3.6 · 10−14 2.7 · 10−13 1.8 · 10−13 4.6 · 10−13 2.8 · 10−13

‖ωh − ω‖2H(curl,Ω) 3.3 · 105 3.1 · 105 9.6 · 104 8.0 · 103 2.1 · 102 2.4 · 10−15

‖uh − u‖2H0(div,Ω) 2.9 · 104 3.8 · 103 1.2 · 104 2.0 · 103 6.6 · 101 8.4 · 10−1

‖ph − p‖2L2(Ω)/R 1.6 · 104 1.2 · 102 9.8 · 100 7.8 · 10−1 1.1 · 10−2 6.6 · 10−5

Table 3. Convergence results for Test case 3 with increasing polynomial degree

The convergence results for Test case 3 are very similar to those of Test case 1. While all
residuals go to zero with increasing polynomial degree, conservation of mass, ∇ · uh = 0,
is satisfied up to machine accuracy for all polynomial degrees

In these 3 test cases the no-slip condition is enforced weakly without the need for ad-
justable parameters to enforce he no-slip constraint which is usually employed in least-
squares finite element methods.

7. Discussion

In this paper we developed a mimetic least-squares spectral element formulation for
Stokes flow with no-slip (velocity) boundary conditions u = 0 along the boundary of the
domain.

Stokes flow with no-slip boundary conditions involves to exact sequences. One se-
quence consisting of the spaces H0(curl,Ω), H0(curl,Ω) and L2

0(Ω) has boundary condi-
tions, while the other sequence consisting of H(curl,Ω), H(div,Ω) and L2(Ω) does not
contain boundary conditions.

A non-standard stability proof for well-posedness is required in order to bound the
momentum equation in H(div,Ω) from below to establish well-posedness of the least-
squares formulation.

Conforming finite dimensional function spaces have been constructed in a spectral ele-
ment context as well as the primary and adjoint operators between these spaces.

All these operations can be represented by operations on the expansion coefficients, i.e.
on the degrees of freedom in the various functions spaces. These operations can be divided
in topological operations by means of incidence matrices and metric-dependent operations
represented by mass matrices.

Although the no-slip condition is weakly enforced in this formulation, there are no
adjustable parameters to enforce the no-slip constraint.
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Numerical tests for non-trivial right-hand side functions reveal that the method is con-
vergent and that mass is conserved for all polynomial degrees. Approximation only takes
place in the momentum equation and the definition of vorticity.

Future work will focus on multi-element methods, curvilinear grids and error estimates
based on the current least-squares formalism.
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